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Abstract
Diffusion of Si and O ions in simulated liquid SiO2 under high pressure (or
high density) have been studied in a model containing 3000 ions under periodic
boundary conditions with pairwise interatomic potentials which have a weak
electrostatic interaction and Morse-type short-range interaction. In order to
observe diffusion in the liquid state, amorphous models at fixed densities of
2.20, 4.30 and 5.35 g cm−3 have been heated up from 350 to 7000 K via
molecular dynamics (MD) simulation and the diffusion constant has been
calculated at temperatures ranging from above the melting point to 7000 K.
Calculations show that the temperature dependence of the diffusion constant
D of components in the system shows an Arrhenius law at relatively low
temperatures above the melting point and shows a power law, D ∝ (T −TC)γ , at
higher temperatures. Dynamical heterogeneities under high pressure have been
observed and discussed.

1. Introduction

Diffusion of ions in liquid SiO2 has attracted great interest and has been under intensive
investigation by both experiment and computer simulation for the past three decades. The
diffusion constant of Si4+ and O2− ions in simulated liquid SiO2 at ambient pressure has been
calculated via MD simulation using Born–Mayer–Huggins interatomic potentials by Woodcock
et al, and has a value of around (5.0 ± 0.5) × 10−5 cm2 s−1 and was of the order of magnitude
predicted from viscosity extrapolation [1]. It was found experimentally that the activation
energies for the diffusion of Si and O in silica are equal to 6 and 4.7 eV, respectively [2, 3].
However, more details about diffusion in liquid SiO2 with the BKS interatomic potentials were
obtained later by Horbach et al [4]. It was found that the temperature dependence of the
diffusion constant D shows an Arrhenius law at low temperatures with an activation energy
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that is very close to the experimental data in [2, 3], and this dependence shows a power law,
D ∝ (T − TC)γ , at higher temperatures, as predicted by mode coupling theory (MCT). The
critical temperature has the value Tc = 3330 K, and the exponent γ is close to 2.10 (see
more details in [4]). A power law behaviour for the dynamics in other tetrahedral network
structure liquids such as GeO2 or H2O has also been found. The temperature dependence of
the diffusion constant in water has been observed by both experiment and computer simulation.
Measurements of the self-diffusion constant in supercooled water under high pressure up to
300 MPa have been reported where the temperature dependence of the self-diffusion constant
in H2O showed a power law, D = D0T 1/2(T/Ts − 1)γ , with the value for γ ranging from 1.80
to 2.46 [5]. The power law behaviour of the dynamics in water has been tested later by MD
simulation. Starr et al calculated the isochores of the diffusion constant in water over a wide
temperature range at densities ranging from 0.95 to 1.40 g cm−3 using the extended simple
point-charge potential [6]. Also, at each density studied, they found a good fitting of a power
law: D ∼ (T/Tc − 1)γ . Moreover, they found that γ decreases under pressure for their model
whereas it increases experimentally [6] and, as suggested, this disagreement indicated the need
to improve the dynamic properties of water models. Similar simulation results for water at
temperatures from 350 K down to 190 K and at pressures from 2.5 GPa down to −300 MPa
also confirmed the prediction of MCT for the dynamics of weakly supercooled liquids, i.e. the
calculated data of each isochore showed a power law: D ∼ (T/Tc − 1)γ (see in [7]). Power
law behaviour for diffusion in liquid simulated GeO2 at ambient pressure has been observed [8].
However, a possible appearance of the power law behaviour for diffusion in liquid silica under
high pressure has not been tested yet. Therefore, clarification of this problem is our main aim
here in the present work. In addition, we also present results for dynamical heterogeneity in
liquid silica under high pressure.

2. Calculation

It is important to choose appropriate interatomic potentials for the system to be simulated. The
results of numerous experimental studies of oxide systems indicate a substantial contribution
of ionic bonding to interatomic interactions due to the high electronegativity of the oxygen
atoms [9]. On the other hand, the covalent interaction is also an important part of the system.
In the simulation of oxides, the covalent interaction is described in terms of three-particle
potentials, which significantly increase the computation time. Since ionic contribution cannot
be neglected for oxides, the Coulomb interactions have to be considered. Further, simulation
of oxides with mixed ion and covalent bonding requires too many force parameters, and is very
difficult to carry out. Therefore, the models have to be simplified and the choice of a model
based on ionic interactions has significant advantages. The results of simulations of oxides
using the ionic model over the past three decades has confirmed this choice (see [1, 4, 8, 9]
and references therein). Concerning the silica system, various kinds of potentials are used for
different purposes. Woodcock et al [1] used a Born–Mayer–Huggins (BMH) potential which
was originally proposed for describing the interaction between ions based on full charges,
and generally it gives elastic moduli that are significantly larger than the experimental values.
Later, pairwise additive models such as TTAM [10, 11] and BKS [12] potentials used fractional
charges, which significantly improved the accuracy of these models in terms of reproducing the
structure and properties of SiO2. The optimization of these potential parameters was based on
ab initio calculations of small clusters, and it seems that both potentials overestimate the inter-
tetrahedral angle, indicating that the Si–O–Si bending interaction is too weak [13]. Moreover,
via a comparison of the melting temperature and the density profile at high temperatures
predicted by potentials in the literature for SiO2, it was found that the high-temperature
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behaviour was best described by the potentials with weak long-range interactions and a Morse-
type potential for short-range interactions [14], as given below:

Ui j(r) = qi q j

r
+ D0

{
exp

[
γ

(
1 − r

R0

)]
− 2 exp

[
1

2
γ

(
1 − r

R0

)]}
(1)

where qi and q j represent the charges of atoms i and j—for Si atoms qSi = +1.30e and for
O atoms qO = −0.65e (where e is the elementary charge unit); r denotes the interatomic
distance between atoms i and j ; and D0, γ and R0 are the parameters of the Morse potentials
representing the short-range interactions in the system.

The Morse potential parameters for the silica system can be found in [14–16]. These
potentials have been used successfully for MD simulation of both the structure and
thermodynamic properties of silica [14–16], in particular for an investigation of the structure
changes in cristobalite and silica glass at high temperatures [15]. These potentials reproduced
well the melting temperature of cristobalite and the glass phase transition temperature of silica
glass, and the calculated data were more accurate than those observed in other simulation works
in which traditional interatomic potentials with stronger electrostatic interaction have been
used, such as the TTAM or BKS potentials [10–12]. Moreover, the calculated results in [15]
reproduced the density maxima at around 1800 K for cristobalite and 1700 K for silica glass,
which are very close to the experimental data. The potential (1) was originally proposed with
the charge equilibrium scheme and was then slightly modified into a potential with the fixed
charges qSi = +1.30e for Si atom and qO = −0.65e for O atom (see more details in [15]). Also,
therefore, such interatomic potentials have been used again here. We use the Verlet algorithm
with an MD time step of 1.60 fs. Initial well-relaxed amorphous SiO2 models at 350 K and at
the three different densities of 2.2, 4.30 and 5.35 g cm−3 have previously been obtained in [16].
The three models have been heated up to 7000 K at fixed density (i.e. an isochore process) at a
heating rate of 4.2945×1012 K s−1. The model obtained at each temperature above the melting
point has been relaxed for 100 000 MD steps (or 160 ps) in order to calculate the diffusion
constant and static properties. In order to calculate coordination number distributions in SiO2

models, we adopt the fixed values RSi−Si = 3.30 Å, RSi−O = 2.10 Å and RO−O = 3.00 Å. Here
R denotes a cutoff radius, which is chosen to be the position of the minimum after the first peak
in the radial distribution function (PRDF), gi j(r), for the amorphous state at the temperature of
350 K and at 2.20 g cm−3.

3. Results and discussions

Diffusion has been studied only at temperatures above the melting point; therefore, it is
necessary to determine the melting temperature for the system at each density presented above.
The melting temperature Tm is determined from the intersection of a linear high- and low-
temperature extrapolation of the potential energy, U (see figure 1). The values of Tm are
equal to 2260, 2480 and 2899 K for the models at 2.20, 4.30 and 5.35 g cm−3. This means
that Tm depends strongly on the density of the system. Moreover, our calculated Tm for a
model at the ambient pressure density 2.20 g cm−3 is higher than those obtained in practice
(i.e. Tm = 1986 K [17]). The discrepancy may be related to the extremely high simulation
heating rate compared with those used in practice, and the model size is rather small. Moreover,
it also indicates that the interatomic potentials used in the present work do not describe the
melting point for amorphous silica well.
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Figure 1. Temperature dependence of potential energy, U , of the system.

Table 1. Structural characteristics of liquid SiO2 at three different densities upon heating from
3000 to 7000 K: ri j —mean interatomic distance or positions of the first peaks in PRDFs; Zi j —the
average coordination number.

ri j (Å) Zi j

Density (g cm−3) T (K) Si–Si Si–O O–O Si–Si Si–O O–Si O–O

2.20 3000 3.04 1.53 2.57 2.92 3.80 1.90 5.38
5000 3.01 1.52 2.59 2.56 3.37 1.68 4.79
7000 3.00 1.51 2.60 2.46 3.13 1.56 4.54

4.30 3000 2.89 1.55 2.31 7.31 5.07 2.54 10.83
5000 2.85 1.53 2.27 6.96 4.88 2.44 10.36
7000 2.82 1.53 2.24 6.74 4.73 2.36 10.11

5.35 3000 2.74 1.54 2.14 9.95 6.00 3.00 12.23
5000 2.72 1.53 2.11 9.63 5.94 2.97 12.15
7000 2.69 1.52 2.09 9.28 5.81 2.90 11.99

3.1. Diffusion

Before discussing diffusion in the system under high pressure, we would like to turn out our
attention to the changes in structure of the system upon heating from 3000 to 7000 K. As shown
in table 1, at 3000 K the models at three different densities of 2.20, 4.30 and 5.35 g cm−3

have tetrahedral, pentahedral and octahedral network structures, respectively (i.e. the mean
coordination number for the Si–O pair, ZSi−O, is equal to 3.80, 5.07 and 6.00, respectively)
although models at 2.20 g cm−3 have a weak tetrahedrality. Also, upon heating, the structure
of a model changes significantly. The mean interatomic distance and the coordination number
for all atomic pairs decrease with temperature (see table 1). However, the Si–O interatomic
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Figure 2. Mean-squared atomic displacement, 〈r2(t)〉, of Si and O particles in liquid SiO2 models
obtained at different temperatures and at a density of 4.30 g cm−3.

distance remains almost unaffected over the range of temperatures between 3000 and 7000 K
due to the strong interaction between Si1.30+ and O0.65− ions. The following points can be
mentioned: the tetrahedrality of the model at 2.20 g cm−3 breaks upon heating and, at high
temperatures, it transforms into a phase with ZSi−O ≈ 3.00. In contrast, although significant
changes in structure have been found in models at higher densities of 4.30 and 5.35 g cm−3,
upon heating one can see that the main structural units remain dominant in the system (i.e. SiO5

in models at 4.30 g cm−3 and SiO6 in models at 5.35 g cm−3). In other words, pentahedrality
and octahedrality remain in the models at 4.30 and 5.35 g cm−3 upon heating from 3000 to
7000 K. However, it is well known that even small changes in the structure can cause dramatic
changes in the dynamics of the system, and one can see this via the changes in diffusion and
dynamical heterogeneities in the system below when the temperature increases. Overall, small
changes in the mean interatomic distances for the models at three different densities over a wide
temperature range from 3000 to 7000 K are related to the low thermal expansion coefficient of
silica (see table 1).

One can determine the diffusion constant of particles in the system via the Einstein relation,
limt→∞ 〈r2(t)〉

6t = D, where 〈r 2(t)〉 is the mean-squared atomic displacement (figure 2) and the
diffusion constant with error bars at different temperatures has been presented in table 2. The
diffusion of atomic species has been studied in the liquid state of the system (at temperatures
above the melting point), i.e. at temperatures ranging from 2500 to 7000 K for models at
2.20 g cm−3, from 2750 to 7000 K for models at 4.30 g cm−3, and from 3000 to 7000 K
for models at 5.35 g cm−3. As shown in figure 3, the diffusion constant ratio, DO

DSi
, is greater

than unity for the temperature range studied, and this means that the oxygen mobility is always
larger than that for silicon. For models at a density ρ � 4.30 g cm−3, the ratio is nearly constant
for the whole temperature range, indicating the intimate connection between the diffusion of Si
and O ions to each other. In contrast, the curve for the system at 5.35 g cm−3 strongly deviates
from the first two curves presented, which is clear evidence of the changes in the diffusion
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Figure 3. Temperature dependence of the ratio of diffusion constants of Si and O particles, DO
DSi

, in
liquid SiO2.

Table 2. Diffusion constant, D in 10−6 cm2 s−1, of atomic species in liquid SiO2 models at three
different densities.

2.20 g cm−3 4.30 g cm−3 5.35 g cm−3

T (K) DSi DO DSi DO DSi DO

2500 2.35 ± 0.03 3.37 ± 0.03 — — — —
2750 8.25 ± 0.08 10.59 ± 0.09 2.88 ± 0.02 4.18 ± 0.03 — —
3000 20.26 ± 0.20 25.14 ± 0.11 6.38 ± 0.04 9.26 ± 0.06 0.06 ± 0.003 0.31 ± 0.006
3250 34.50 ± 0.82 42.00 ± 0.71 11.18 ± 0.11 15.00 ± 0.05 0.16 ± 0.010 1.18 ± 0.03
3500 54.12 ± 0.95 69.15 ± 0.80 15.98 ± 0.13 21.58 ± 0.20 0.50 ± 0.007 2.87 ± 0.02
4000 108.70 ± 1.09 132.98 ± 0.87 29.11 ± 0.16 41.38 ± 0.21 2.45 ± 0.02 8.42 ± 0.03
4500 168.90 ± 1.30 217.20 ± 1.12 44.82 ± 0.22 63.14 ± 0.25 5.79 ± 0.05 18.34 ± 0.08
5000 203.60 ± 1.53 271.70 ± 1.05 55.97 ± 0.36 74.38 ± 0.38 10.64 ± 0.06 29.55 ± 0.14
5500 313.00 ± 2.21 341.60 ± 1.57 75.95 ± 0.40 98.77 ± 0.41 18.31 ± 0.09 41.00 ± 0.15
6000 373.00 ± 1.12 421.10 ± 1.42 87.33 ± 0.42 129.60 ± 0.42 26.00 ± 0.08 58.00 ± 0.25
6500 435.74 ± 2.42 498.57 ± 0.93 118.72 ± 0.35 158.60 ± 0.54 33.48 ± 0.19 73.64 ± 0.23
7000 474.89 ± 3.00 576.32 ± 1.48 133.81 ± 0.44 171.10 ± 0.69 41.19 ± 0.17 90.06 ± 0.56

mechanism of ions in an octahedral network structure, i.e. the non-connected diffusion of Si and
O ions dominates in the system. According to our calculations, there are significant amounts of
SiO5 and SiO7 units, in addition to the main structural units SiO6, in models at 5.35 g cm−3, and
the fraction of Si atoms with other coordinations is very small (table 3). As the temperature
increases, the fraction of dominant SiO6 units in the octahedral network structure decreases,
while the fraction of structural defects (i.e. SiO5 and SiO7) in the system increases. Therefore, it
can be suggested that the diffusion of oxygen ions in this phase mainly takes place by breaking
the Si–O bonds of SiO6 sites, i.e. it leads to the formation of SiO5 defects and non-bonding
oxygen ions, and then the latter attach to other SiO6 sites to form overcoordinated SiO7 defects.
In contrast, Si ions are located in the centre of SiOx polyhedra and their diffusion mechanism
almost does not change in the models at three different densities. Such a situation leads to the
occurrence of the non-connected diffusion of Si and O ions. Temperature-induced network-
breaking defects can be represented by the following reaction: 2SiO6 → SiO5 + SiO7. The
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Figure 4. 1/T dependence of the logarithm of the diffusion constants of Si and O particles in liquid
SiO2. The straight lines just serve as guides for the eye.

Table 3. Number of Si atoms with corresponding coordination number ZSi−O in 5.35 g cm−3

models at different temperatures.

ZSi−O

T (K) 4 5 6 7 8

2500 7 146 690 154 3
3000 4 179 641 166 10
3250 12 191 621 167 9
3500 17 190 610 177 5
5000 24 225 556 181 14

higher the temperature, the higher the concentration of thermal defects, and indeed the same
phenomenon is observed in table 3. The shooting up of the ratio DO

DSi
at around 3000 K may

be related to the sudden changes in the oxygen diffusion mechanism caused by the melting of
the 5.35 g cm−3 system (figure 3). The dominance of the non-connected diffusion of Si and O
ions in high-density systems leads to an enhancement of the differences between their diffusion
constants (see figure 4).

As mentioned in section 1, a power law behaviour for the dynamics in the network structure
liquids has attracted great interest. However, the validity of the power law for diffusion at high
pressure has been found only for water [5, 6] via both experiment and simulation. The question
about the possible validity of a power law for the dynamics in other liquids under high pressure
remains unresolved. In the present work, we aim to show the temperature dependence of the
diffusion constant for models at three different densities, and indeed at high temperatures a
deviation from an Arrhenius law was found (figure 4). After intensive testing we found that at
T � 4500 K for the 2.20 g cm−3 models and at T � 5000 K for the 4.30 and 5.35 g cm−3
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Figure 5. Fit of each isochore to the power law, D ∼ (T − Tc)
γ , predicted by MCT.

Table 4. Parameters of power law, D ∼ (T − Tc)
γ , and Arrhenius law, D = D0 exp(− E

kB T ), in
liquid SiO2 models at three different densities.

Tc (K) γ Do (in 10−4 cm2 s−1) E (eV)
Density
(g cm−3) Si O Si O Si O Si O

2.20 3330 3484 0.904 0.753 1589.763 1380.637 2.366 2.266
4.30 3538 3605 1.014 0.982 96.867 92.051 1.912 1.810
5.35 4573 4044 0.777 1.001 815.124 625.368 3.652 3.090

models, the temperature dependence of the diffusion constant shows a power law, as predicted
by MCT: D ∼ (T − Tc)

γ (see figure 5). Also, at lower temperatures it shows an Arrhenius law:
D = D0 exp(− E

kB T ). The parameters of these laws are presented in table 4. One can see that the
exponent parameter γ increases with increasing pressure, like those observed experimentally
for water [5] with the exception of the case of the Si particle at 5.35 g cm−3. It is essential to
notice that the parameter γ observed here for our silica is much less than that for water [5, 6].
Also, at the ambient pressure density of 2.20 g cm−3, the parameter γ is at around values
of 0.904 and 0.735 for both Si and O particles versus values of 2.15 and 2.05 for Si and O
particles, obtained for BKS interatomic potential silica models at 2.37 g cm−3 [4]. Moreover,
the MCT temperatures Tc = 3330 and 3484 K obtained at the density of 2.20 g cm−3 for
Si and O are close to the value 3330 K in [4]. The discrepancy for γ may be related to the
different interatomic potentials used in the simulations rather than to the difference in densities
of the system. As noticed in [4], the dynamics quantities depend much more sensitively on the
interatomic potentials than on the structural quantities.

Concerning the Arrhenius law, no systematic changes with pressure have been found
(table 4). However, the activation energy for both Si and O particles is smaller than that

8



J. Phys.: Condens. Matter 19 (2007) 116104 V V Hoang et al

Figure 6. Non-Gaussian parameter in SiO2 models obtained at 3000 K.

obtained experimentally for silica at ambient pressure, equal to 4.70 and 6 eV for oxygen
and silicon, respectively [2, 3]. The discrepancy between our values for activation energy and
experimental values may be related to the extremely high heating rate compared with those used
in practice. On the other hand, although the adopted interatomic potentials with a Morse-type
part for short-range interactions describe the structure and several thermodynamics properties
of the vitreous silica well, they do not give the activation energy for diffusion in liquid silica
accurately compared with that for BKS [4].

3.2. Dynamical heterogeneity

Dynamical heterogeneity (DH) in different supercooled systems at ambient pressure has been
under intensive investigation in recent years (see [18–30] and references therein). In particular,
DH in BKS interatomic potential silica models has been studied in detail [21–23]. However,
no work related to DH in liquids under high pressure has been found in the literature. Also, it
motivates us to carry out a study in heated silica models at different densities. The existence of
DH in the system can be determined via the non-Gaussian parameter which has the form [18]
α2(t) = 3〈r4(t)〉

5〈r2(t)〉2 − 1. If the parameter α2(t) differs from zero, it indicates the existence of
DH in the system, which is clearly found for our liquid silica at 3000 K and at three different
densities (figure 6). However, the DH in the models at the first two densities is much weaker
than that at 5.35 g cm−3, indicating the density dependence of DH in the system: the increase
of DH with increasing density may be due to the enhancement of the cage effects. Moreover,
one can see that the position of the first strong peak of the curves in figure 6 is nearly the same
for the three different densities, and differs from each other just by the intensity of the peak.
On the other hand, the occurrence of additional strong peaks in the non-Gaussian parameter
curves at 5.35 g cm−3 has been found, unlike for the curves at lower densities. Non-smooth
changes in the curves with time may be due to the statistics of the data in the present work
being not very good. The DH in the system can be found directly via the atomic displacement

9
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Figure 7. Atomic displacement distribution in SiO2 models obtained at 3000 K by relaxing for
160 ps after heating.

(This figure is in colour only in the electronic version)

distribution (figure 7). In the homogenous system, such a distribution has a Gaussian form, and
deviation from the Gaussian form due to a tail of the most mobile particles in the system serves
as an indication of the existence of DH. Figure 7 shows that the deviation is more pronounced
at 5.35 g cm−3 and is in good accordance with those observed via the non-Gaussian parameter.
Also, one can approximately determine the fraction of the most mobile particles in the system
via such a distribution, and it is equal to 4.40%, 2.83% and 6.83% (both Si and O particles
together) for the models at 2.20, 4.30 and 5.35 g cm−3, respectively (i.e. corresponding to the
amount of atoms with displacement larger than 24.40, 16.00 and 3.60 Å for the models at
2.20, 4.30 and 5.35 g cm−3, respectively). It is essential to notice that the fraction of the most
mobile particles has been determined, and it is equal to 5% in Lennard-Jones and Dzugutov
liquids [18, 28] or 6.5% in a glass-forming polymer melt [20]. For convenience, we take the
fixed value of 5% for our silica at the three different densities. Many calculations show an
important role of the most immobile particles in the DH of the system and, as shown in figure 7,
the most immobile particles also make a significant contribution to the deviation of the atomic
displacement distribution from the Gaussian form. Therefore, the dynamics of the 5% most
immobile particles will be studied in detail here.

According to the results presented in figures 6 and 7, the DH in models at 2.20 and
4.30 g cm−3 is too weak, so we will focus our attention on the DH in models at 5.35 g cm−3. In
order to get more insight into the correlation between extremely low- or high-mobility particles
in the system, we have calculated the cluster size distribution in the system at different densities.
Also, like those observed in other liquids at ambient pressure, particles of extremely low or high
mobility in models under high pressure also form clusters. However, the phenomenon is weak
for models at 2.20 and 4.30 g cm−3 (not shown). At the higher density of 5.35 g cm−3, we
found that the number of particles in the largest cluster is 24 particles for the most mobile
ones and, in contrast, 22 particles for the most immobile particles. These clusters are relatively
small compared with those obtained in other liquids [18, 23], and this may be due to smaller

10
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Figure 8. Cluster size distribution of the 5% most mobile or immobile particles in SiO2 models
obtained at 5.35 g cm−3 and at 3000 K by relaxing for 160 ps after heating.

model in the present work. However, it is close to those observed in a small Lennard-Jones
system [26]. Also, such a cluster size distribution is similar for both the most mobile and
immobile particles in the system, and it does not show a power law, unlike those observed for
Lennard-Jones liquids [18], charged colloidal suspensions [19] or in Dzugutov liquid [28] (see
figure 8). Possibly, it is caused by the different choices of interval time, �t , for calculating the
cluster size distribution. Commonly, �t is chosen as the time when the non-Gaussian parameter
α2(t) or the mean cluster size is a maximum, and the corresponding cluster size distribution
shows a power law, P(n) ∼ n−γ (see [18, 19, 28]). The interval time �t in the current
work was chosen to be equal to 160 ps. The mean cluster size for both the most mobile and the
immobile particles has a tendency to grow with density, and the mean cluster size of particles of
extremely low or high mobility is nearly constant with temperature, with the exception of liquid
at 5.35 g cm−3 (figure 9). For the model at 5.35 g cm−3, the temperature dependence of the
mean cluster of the 5% most mobile particles can be described approximately by an exponential
decay, S = S0 + A exp(−T/t1) with the following parameters: S0 = 2.356, A = 570.995 and
t1 = 591.311 (where S is the mean cluster size). In contrast, for the 5% most immobile particles
in the system, it shows another law: the mean cluster size increases with increasing temperature
and then decreases (figure 9). This indicates the different temperature dependence of the mean
cluster size of the most mobile and immobile particles in the system. Likely, it was found that
the temperature dependence of the mean cluster size of extremely fast particles in a cooled
Lennard-Jones system [18] showed a power law, S ∼ (T − Tp)

γ . Also, in contrast to what
is found for the most mobile particles, the correlation between the most immobile particles
does not show any singular behaviour. One can find that DH in 2.37 g cm−3 BKS interatomic
potential silica models is more pronounced than in our models at 2.20 g cm−3 from the height
of the non-Gaussian parameter, α2(t), and from the strong correlation between the 5% most
mobile particles in the system [23]. There are two possible reasons for the discrepancy. First,
it is essential to notice that DH in several liquids mentioned above was mostly obtained by
cooling from the melts, unlike those observed in the present work (i.e. obtained by heating
from an amorphous state). Hoang showed that the dynamics including DH in models obtained
by cooling from the melt and by heating from the amorphous phase is quite different due to
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Figure 9. Temperature dependence of mean cluster size distribution in SiO2 models obtained by
relaxing for 160 ps after heating.

Figure 10. P–T diagram for in liquid SiO2 at three different densities.

thermal hysteresis [30], and DH in the models obtained by cooling from the melts is much
stronger than those in models obtained by heating from an amorphous state. The second reason
is related to the different interatomic potentials used here and used in [23]. According to our
recent calculations, DH in the same system depends strongly on the interatomic potentials used
in the simulations [31].

Finally, we would like to stop here for discussion about the validity of the interatomic
potentials used in our simulation at high pressures and temperatures. As presented in figure 10,
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the pressure in the systems at 4.30 and 5.35 g cm−3 is rather high. The pressure dependence
of the interatomic potentials is of great interest. However, it is too complex, and up to now
the pressure changes of the interatomic potentials in the simulations have not been paid much
attention. The fact is that simulation of SiO2 at high density (i.e. high pressure) has been
performed with fixed BKS or TTAM pair interatomic potentials [32–36]. The validity of the
Morse-type potentials used in our simulations at high temperatures has been tested [14, 15].
However, their validity under high pressures has been under question. It is essential to notice
that, by using these interatomic potentials, we found a pressure-induced phase transition from
a tetrahedral to an octahedral network structure in amorphous silica, in accordance with those
observed in practice [16]. Possibly, these interatomic potentials would not give the quantitative
data for silica at very high pressures, but we are sure that they can give qualitative results.
Moreover, silica is the most abundant substance in the earth, i.e. over 60% of the earth’s crust
is made of it and therefore its dynamics under high pressures and temperatures may be related
to the flow of magma in the depth of the earth. This means that the study of the dynamics of
silica under high pressure and temperatures is of great interest.

4. Conclusion

The main conclusions can be drawn:

(i) We found that the temperature dependence of the diffusion constant in simulated silica
shows an Arrhenius law at temperatures above the melting point and shows a power law,
D ∼ (T − TC)γ , at higher temperatures for models at densities ranging from 2.20 to
5.35 g cm−3. The exponent γ of a power law increases with pressure (or density), like
those observed experimentally for water. This means that, upon heating the system from
relatively low temperature to high temperature, we found a crossover from Arrhenian to
non-Arrhenian dynamics in the liquids, i.e. corresponding to a transition from strong to
fragile liquid behaviour in the system. Also, this is related to structural evolution in
the system when the temperature increases [37]. It is essential to notice that diffusion
under high pressures and temperatures in liquid silica with the BKS interatomic potentials
has been studied and the reverse transition from fragile to strong liquid behaviour has
been found upon cooling the system from high temperature towards the glass phase
transition [32, 33]. However, the density range studied in [32, 33] is narrow, i.e. it ranged
from 2.31 to 3.90 g cm−3, and the validity of a power law for the dynamics in the system
has not been tested yet.

(ii) We found the existence of dynamical heterogeneity in liquid silica models obtained
by heating from an amorphous state under very high pressure (i.e. high density), and
calculations show that this depends strongly on the density of the system, i.e. it increases
with increasing density due to the enhancement of the cage effects.

(iii) Calculations show that the melting temperature of the system, Tm, depends strongly on the
density, and that it increases with density.
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